RANCANG BANGUN APLIKASI PENDATAAN SENSUS EKONOMI BERBASIS MOBILE

  • Cahyo Prianto
  • Nurul Lutfiasih

Abstract

Badan Pusat Statistik (BPS) merupakan sebuah institusi pemerintah yang mempunyai hak untuk melakukan kegiatan statistik yaitu berupa sensus dan survei. BPS melakukan pengolahan data dari beberapa sensus, cotohnya yaitu tentang sosial dan kependudukan, ekonomi dan perdagangan, serta pertanian dan pertambangan. Setiap data dan keputusan yang diambil harus berdasarkan informasi yang valid dan akurat. Namun semakin meningkatnya permintaan data dan informasi maka akan berpengaruh pula pada meningkatnya kegiatan survei yang tidak sebanding dengan terbatasnya jumlah SDM. Meski BPS mempunyai sistem dan infrastruktur teknik informasi yang memadai, namun masih ada sistem yang belum sepenuhnya terintegrasi dengan baik. Sistem yang akan dibuat adalah sistem pada aplikasi yang digunakan BPS dalam pengolahan data sensus ekonomi untuk Usaha Mikro dan Kecil. Sistem tersebut dianalisis dengan cara pengumpulan data dengan menggunakan kuesioner. Sistem yang akan dianalisis tersebut diharapkan dapat dibuat aplikasi dengan menggunakan model Waterfall.Dengan menggunakan model Waterfall maka kualitas pengembangan yang dihasilkan akan lebih baik karena dilakukan secara bertahap sehingga sistem yang akan dikembangkan dapat membantu petugas dalam mengolah data.

References

[1] M. Pota, M. Esposito, and G. D. Pietro, “Likelihood-fuzzy analysis: From data, through statistics, to interpretable fuzzy classifiers,” International Journal of Approximate Reasoning, vol. 93, pp. 88 – 102, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0888613X1730659X
[2] M. Stecker, P. Pasqualetti, R. J. Barry, Z. J. Daskalakis, H. R. Siebner, and U. Ziemann, “Statistical data analyses for clinical neurophysiology,” Clinical Neurophysiology, vol. 128, no. 10, pp. 1837 – 1838, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1388245717308830
[3] A.-A. Khalil, A. Reza, P. A. Junaedi, and B. Kanigoro, “Data visualization application for analyzing public company financial statement,” Procedia Computer Science, vol. 59, pp. 45 – 53, 2015, international Conference on Computer Science and Computational Intelligence (ICCSCI 2015). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877050915018657
[4] S. Scheider, F. O. Ostermann, and B. Adams, “Why good data analysts need to be critical synthesists. determining the role of semantics in data analysis,” Future Generation Computer Systems, vol. 72, pp. 11 – 22, 2017. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0167739X17303047
[5] X. Ren, Y. Zhao, W. Zeiler, G. Boxem, and T. Li, “A data mining approach to analyze occupant behavior motivation,” Procedia Engineering, vol. 205, pp. 2442– 2448, 2017, 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, 19-22 October 2017, Jinan, China. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877705817345307
[6] G. Tan, D. A. Mortona, and I. Larson, “Strategies to analyse data obtained from liquid intrusion experiments of loose porous materials,” Journal of Pharmaceutical and Biomedical Analysis, vol. 145, pp. 711 – 717, 2017. [Online]. Available : http://www.sciencedirect.com/science/article/pii/S0731708517304892
[7] L. Birglen and T. Schlicht, “A statistical review of industrial robotic grippers, ”Robotics and Computer-Integrated Manufacturing, vol. 49, pp. 88 – 97, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0736584516304240
[8] Y. Qiu, M. Wei, B. Bai, and C. Mao, “Data analysis and application guidelines for the microgel field applications,” Fuel, vol. 210, pp. 557 – 568, 2017. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S001623611731089X
[9] S. L. Rossato, T. T. Fung, and M. P. Rodrigues, “A data entry system for dietary surveys based on visual basic for applications programming,” Journal of the Academy of Nutrition and Dietetics, vol. 117, no. 8, pp. 1165 – 1170, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2212267216309509
[10] M. Birjali, A. Beni-Hssane, and M. Erritali, “Analyzing social media through big data using infosphere biginsights and apache flume,” Procedia Computer Science, vol. 113, pp. 280 – 285, 2017, the 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017) / The 7th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2017) / Affiliated Workshops. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877050917317088
[11] S. Golodetz, C. Nicholls, I. Voiculescu, and S. Cameron, “Two tree-based methods for the waterfall,” Pattern Recognition, vol. 47, no. 10, pp. 3276 – 3292, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320314001630
[12] B. Berman, “Planning and implementing effective mobile marketing programs,” Business Horizons, vol. 59, no. 4, pp. 431 – 439, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0007681316300076
[13] S. Apichatibutarapong, “Business forecasting technique on mobile devices by using r - programming,” Procedia - Social and Behavioral Sciences, vol. 197, pp. 1377 – 1382, 2015, 7th World Conference on Educational Sciences. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877042815040756
[14] E. G. Boix, C. Scholliers, W. D. Meuter, and T. DâAZHondt, “Programming mobile contextaware applications with totam,” Journal of Systems and Software, vol. 92, pp. 3 – 19, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0164121213001799
[15] L. Briz-Ponce, A. Pereira, L. Carvalho, J. A. Juanes-MÃlndez, and F. J. García- PeÃsalvo, “Learning with mobile technologies students behavior,” Computers in Human Behavior, vol. 72, pp. 612 – 620, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0747563216303545
[16] H. E. Kim, Y.-J. Hong, M.-K. Kim, Y. H. Jung, S. Kyeong, and J.-J. Kim, “Effectiveness of self-training using the mobile-based virtual reality program in patients with social anxiety disorder,” Computers in Human Behavior, vol. 73, pp. 614 – 619, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0747563217302595
[17] Bpshq.2016. “Sensus Ekonomi 2016” . Jakarta . [Online]. Available : https://se2016.bps.go.id/Lanjutan/index.php/metadata/
[18] Hanafiah, H. (2014). Penggunaan Fair Scheduler dan FIFO pada Job Scheduling dengan Karakteristik Job pada Hadoop. Bandung.
Published
2019-01-04
How to Cite
PRIANTO, Cahyo; LUTFIASIH, Nurul. RANCANG BANGUN APLIKASI PENDATAAN SENSUS EKONOMI BERBASIS MOBILE. JUMANJI (Jurnal Masyarakat Informatika Unjani), [S.l.], v. 2, n. 2, p. 12-22, jan. 2019. ISSN 2598-8069. Available at: <http://jumanji.unjani.ac.id/index.php/jumanji/article/view/34>. Date accessed: 24 sep. 2019.