Analisis Sentimen Berbasis Aspek dengan Deep Learning Ditinjau dari Sudut Pandang Filsafat Ilmu

  • Nuryani Nuryani LIPI dan ITB
  • Dimitri Mahayana

Abstract

Pesatnya pertumbuhan internet dan semakin populernya aplikasi media sosial memungkinkan orang untuk mengekspresikan opini dan pengalaman tentang sesuatu kepada public secara terbuka. Hal tersebut dapat dimanfaatkan dan dianalisis untuk mengeksplorasi customer behaviour (perilaku pengguna), memprediksi kebutuhan pengguna dan memahami opininya. Analisis sentimen berbasis aspek (aspect-based sentiment analysis) membuat analisis dan investigasi untuk mengidentifikasi polaritas sentimen pada aspek spesifik secara tepat. Deep learning untuk analisis sentimen berbasis aspek saat ini telah menunjukkan kinerja yang cukup menjanjikan karena efisiensinya dalam ekstraksi fitur otomatis dan kemampuannya untuk menangkap fitur sintaksis dan semantik teks tanpa perlu rekayasa fitur tingkat tinggi. Menurut Thomas Kuhn, ilmu pengetahuan tidak bersifat kumulatif, tetapi revolusioner dan berkembang secara historis. Ilmu pengetahuan tidak terlepas dari paradigma. Tulisan ini bertujuan untuk memberikan ulasan tentang penggunaan deep learning untuk analisis sentimen berbasis aspek dan tinjauannya menurut pandangan filsafat ilmu.

References

Bo Pang and Lillian Lee. 2008. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2, 1-2 (2008), 1-135. DOI=http://dx.doi.org/10.1561/1500000011.
Toqir A. Rana, Yu-N Cheah, Aspect Extraction in sentiment analysis: comparative analysis and survey, Springer Science+Business Media Dordrecht 2016, ArtifIntell Rev (2016) 46:459-483.
Kumar Ravi, Vadlamani Ravi, A survey on opinion mining and sentiment analysis: Tasks, approaches and applications, Knowledge-Based Systems 89 (2015) 14-46
Bo Wang and Min Liu, Deep Learning for Aspect-Based Sentiment Analysis, Stanford University Report, 2015, [Online]. Available: https://cs224d.stanford.edu. [Accessed: 21-Desember-2019].
Chao Yang, Hefeng Zhang, Bin Jiang, Keqin Li, Aspect-based sentiment analysis with alternating coattention networks, Information Processing and Management 56 (2019) 463-478.
Hai Ha Dohaiha, PWC Prasad, Angelika Maag, AbeerAlsadoon, Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review, Expert Systems with Applications 118 (2019) 272-299.
John Pavlopoulos. 2014. Aspect based sentiment analysis. PhD thesis, Dept. of Informatics, Athens University of Economics and Business, Greece.
Maria Pontiki, DimitriosGalanis, HarisPapageorgiou, Suresh Manandhar, Ion Androutsopoulos, SemEval-2005 Task 12: Aspect Based Sentiment Analysis, Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 486-495, Denver, Colorado, June 4-5, 2015. @ 2015 Association for Computational Linguistics
Maria Pontiki, DimitriosGalanis, HarisPapageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, VéroniqueHoste, Marianna Apidianaki, Xavier Tannier, Natalia Loukachevitch, EvgenyKotelnikov, Nuria Bel, Salud María Jiménez-Zafra, GülşenEryiğit, SemEval-2016 Task 5: Aspect Based Sentiment Analysis, Proceedings of SemEval-2016, pages 19–30, San Diego, California, June 16-17, 2016. @ 2016 Association for Computational Linguistics.
Jason Brownlee, Deep Learning for Natural Language Processing, Machine Learning Mastery, 2017. https://machinelearningmastery.com/deep-learning-for-nlp/
HitkulJangid, Shivangi Singhal, Rajiv Ratn Shah, and Roger Zimmermann. 2018. Aspect-Based Financial Sentiment Analysis using Deep Learning. In WWW ’18 Companion: The 2018 Web Conference Companion, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA, 6 pages. https://doi.org/10. 1145/3184558.3191827
Yoon Kim, Convolutional Neural Networks for Sentence Classification, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746-1751, October 25-29, 2014, Doha, Qatar. @ 2014 Association for Computational Linguistics.
Bing Liu. Sentiment Analysis and Opinion Mining, Morgan & Claypool Publishers, May 2012.
Dimitri Mahayana, Catatan Kuliah: EL 7090 Filsafat Ilmu Pengetahuan, ITB Press, 2018.
T. S. Kuhn, “The Structure of Scientific Revolutions,” Chicago, IL: University of Chicago Press, 1962.
Yoon Kim, Convolutional Neural Networks for Sentence Classification, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746-1751, October 25-29, 2014, Doha, Qatar. @ 2014 Association for Computational Linguistics.
Xu L., Liu J., Wang L., Yin C. (2018) Aspect Based Sentiment Analysis for Online Reviews. In: Park J., Loia V., Yi G., Sung Y. (eds) Advances in Computer Science and Ubiquitous Computing. CUTE 2017, CSA 2017. Lecture Notes in Electrical Engineering, vol 474. Springer, Singapore
Ruidan He, Wee Sun Lee, Hwee Tou Ng, Daniel Dahlmeier, Exploiting Document Knowledge for Aspect-level Sentiment Classification, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 2018.
Alqaryouti, O., Siyam, N., Monem, A.A., Shaalan, K., Aspect-Based Sentiment AnalysisUsing Smart Government Review Data, Applied Computing and Informatics (2019), doi: https://doi.org/10.1016/j.aci.2019.11.003
Liu, P. and H. Meng. 2014. “Seemgo: Conditional random fields labeling and maximum entropy classification for aspect based sentiment analysis”. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Dublin, Ireland: ACL and Dublin City University, August 2014, pages 527–531.
Jordhy Fernando, Masayu Leylia Khodra, Ali Akbar Septiandri, Aspect and Opinion Terms Extraction Using Double Embeddings and Attention Mechanism for Indonesian Hotel Reviews, arXiv:1908.04899 [cs.CL], 2019.
Budi M Mulyo & Dwi H Widyantoro, Aspect-Based Sentiment Analysis Approach with CNN, Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018.
P. Ray and A. Chakrabarti, A Mixed approach of Deep Learning method and Rule-Based method to improve Aspect Level Sentiment Analysis, Applied Computing and Informatics, 2019, https://doi.org/10.1016/j.aci.2019.02.002
Published
2021-02-21
How to Cite
NURYANI, Nuryani; MAHAYANA, Dimitri. Analisis Sentimen Berbasis Aspek dengan Deep Learning Ditinjau dari Sudut Pandang Filsafat Ilmu. JUMANJI (Jurnal Masyarakat Informatika Unjani), [S.l.], v. 4, n. 02, p. 78-94, feb. 2021. ISSN 2598-8069. Available at: <http://jumanji.unjani.ac.id/index.php/jumanji/article/view/58>. Date accessed: 28 oct. 2021. doi: https://doi.org/10.26874/jumanji.v4i2.58.